Polynomial Interpolation
Contents
Polynomial Interpolation#
For a given set of \(k + 1\) points \(\left(x_{j}, y_{j}\right)\) with no two \(x_{j}\) values equal, to find the polynomial of lowest degree that assumes at each value \(x_{j}\) the corresponding value \(y_{j}\).
Lagrange interpolation polynomial#
\[
L(x):=\sum_{j=0}^{k} y_{j} \ell_{j}(x)
\]
Lagrange basis polynomials:#
\[\begin{split}
\ell_{j}(x):=\prod_{\substack{0 \leq m \leq k \\ m \neq j}} \frac{x-x_{m}}{x_{j}-x_{m}} \quad ,j\in [0,k]
\end{split}\]
Note that:
\[
\forall(i \neq j): \ell_{j}\left(x_{i}\right)=0
\]
\[
\ell_{j}\left(x_{j}\right):=1
\]
It follows that \(y_{j} \ell_{j}\left(x_{j}\right)=y_{j}\), \(L\left(x_{j}\right)=y_{j}\)